Exergy Analysis of a Subcritical Refrigeration Cycle with an Improved Impulse Turbo Expander

نویسندگان

  • Zhenying Zhang
  • Lili Tian
چکیده

The impulse turbo expander (ITE) is employed to replace the throttling valve in the vapor compression refrigeration cycle to improve the system performance. An improved ITE and the corresponding cycle are presented. In the new cycle, the ITE not only acts as an expansion device with work extraction, but also serves as an economizer with vapor injection. An increase of 20% in the isentropic efficiency can be attained for the improved ITE compared with the conventional ITE owing to the reduction of the friction losses of the rotor. The performance of the novel cycle is investigated based on energy and exergy analysis. A correlation of the optimum intermediate pressure in terms of ITE efficiency is developed. The improved ITE cycle increases the exergy efficiency by 1.4%–6.1% over the conventional ITE cycle, 4.6%–8.3% over the economizer cycle and 7.2%–21.6% over the base cycle. Furthermore, the improved ITE cycle is also preferred due to its lower exergy loss.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exergy Analysis of a Molten Carbonate Fuel Cell-Turbo Expander-Steam Turbine Hybrid Cycle

Exergy analysis of an integrated molten carbonate fuel cell-turbo expander-steam turbine hybrid cycle has been presented in this study. The proposed cycle has been used as a sustainable energy approach to provide a micro hybrid power plant with high exergy efficiency. To generate electricity by the mentioned system, an externally reformed molten carbonate fuel cell located upstream of the combi...

متن کامل

Saving Energy by Exergetic Analysis of MTP Process Refrigeration System

The exergetic analysis is a tool that has been used successfully in many studies aiming a more rational energy consumption to reduce the cost of processes. With this analysis, it is possible to perform an evaluation of the overall process, locating and quantifying the degradation of exergy. This paper applies exergy approach for analyzing the heat exchanger network design and refrigeration of M...

متن کامل

Energetic and Exergetic Analysis of a Transcritical N2O Refrigeration Cycle with an Expander

Comparative energy and exergy investigations are reported for a transcritical N2O refrigeration cycle with a throttling valve or with an expander when the gas cooler exit temperature varies from 30 to 55 ◦C and the evaporating temperature varies from −40 to 10 ◦C. The system performance is also compared with that of similar cycles using CO2. Results show that the N2O expander cycle exhibits a l...

متن کامل

Application of Turbo-Expander for Greenhouse Gas and Air Pollutant Emissions Reduction Using Exergy and Economical Analysis

The effects of greenhouse gases (GHG) on the growth of global warming, and increase of GHG and air pollutant emissions for energy production have forced the need of energy recovery which is normally wasted in industrial plant. The present research work focused on the GHG and air pollutant emissions reduction employing pressure waste energy recovery. Pressure break-down via Joule-Thomson valve i...

متن کامل

Thermoeconomic optimization and exergy analysis of transcritical CO2 refrigeration cycle with an ejector

The purpose of this research is to investigate thermoeconomic optimization and exergy analysis of transcritical CO2 refrigeration cycle with an ejector. After modeling thermodynamic equations of elements and considering optimization parameters of emerging temperature of gas of cooler (Tgc) , emerging pressure of cooler's gas (Pgc) , and eva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2014